衰老可以引起大脑的认知和再生功能障碍,增加神经退行性病变的可能性。之前,研究人员们发现,利用异时联体的方法,即将年轻小鼠和年老小鼠的循环系统连接起来,年轻小鼠的血液可以逆转年老小鼠下降的学习能力。近日,来自UCSF的研究人员,利用异时联体
的方法发现,年老小鼠的血液可以促进年轻小鼠大脑的衰老。此外,他们在这些年老小鼠的循环系统中发现了一种促衰老因子,beta-2微球蛋白(B2M),
正是这种分子抑制了记忆区域大脑细胞的再生,从而引起了认知力的下降。相关研究结果于7月6日在线发表在Nature Medicine杂志上。
B2M
是MHC I(主要组织相容性复合物I类)的一个组成部分,MHC I 在适应性免疫系统中起到了重要的作用。目前,越来越多的研究表明,B2M-MHC
I复合物存在于除红细胞和浆细胞之外的所有细胞上,然而,这个复合物在大脑上的作用并不与免疫相关,而是与引导大脑发育、促进神经细胞沟通及对行为影响相
关。
在此项研究中,研究人员首先发现,小鼠血液中的B2M水平随着年龄增长而稳步升高。与年老小鼠循环系统相连的年轻小鼠体内的B2M水
平也比较高。这项发现在人类中也得到了证实,即随着年龄的增长,人体血液及脑脊液中的B2M水平也有所增高。接着,研究人员将B2M注射入年轻小鼠的循环
系统,或直接注射入大脑中,结果均显示,这些小鼠学习和记忆力下降,而且神经再生也被抑制。然而,小鼠中的Tap1基因缺乏(细胞表面的MHC
I表达下降),或者B2M基因敲除,均可以减低与年龄相关的认知力的下降,并提高年老小鼠的神经再生。这些结果提示,B2M是一个很好的抗体或小分子化合
物的作用靶点,用来治疗由衰老引起的认知力下降。 (生物谷Bioon.com)
本文系生物谷原创编译整理,欢迎转载!转载请注明来源并附原文链接。
doi:10.1038/nm.3898
PMC:
PMID:
β2-microglobulin is a systemic pro-aging factor that impairs cognitive function and neurogenesis
Saul A Villeda, et al.
Aging
drives cognitive and regenerative impairments in the adult brain,
increasing susceptibility to neurodegenerative disorders in healthy
individuals1, 2, 3, 4. Experiments using heterochronic parabiosis, in
which the circulatory systems of young and old animals are joined,
indicate that circulating pro-aging factors in old blood drive aging
phenotypes in the brain5, 6. Here we identify β2-microglobulin (B2M), a
component of major histocompatibility complex class 1 (MHC I) molecules,
as a circulating factor that negatively regulates cognitive and
regenerative function in the adult hippocampus in an age-dependent
manner. B2M is elevated in the blood of aging humans and mice, and it is
increased within the hippocampus of aged mice and young heterochronic
parabionts. Exogenous B2M injected systemically, or locally in the
hippocampus, impairs hippocampal-dependent cognitive function and
neurogenesis in young mice. The negative effects of B2M and
heterochronic parabiosis are, in part, mitigated in the hippocampus of
young transporter associated with antigen processing 1 (Tap1)-deficient
mice with reduced cell surface expression of MHC I. The absence of
endogenous B2M expression abrogates age-related cognitive decline and
enhances neurogenesis in aged mice. Our data indicate that systemic B2M
accumulation in aging blood promotes age-related cognitive dysfunction
and impairs neurogenesis, in part via MHC I, suggesting that B2M may be
targeted therapeutically in old age.